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Abstract

In this paper a novel technique for arbitrary boundary
positioning in TLM networks will be described. This
capability removes the restriction that dimensions of TLM
models can only be integer multiples of the mesh parameter
and allows superior boundary resolution. Since the position

of boundaries can be continuously varied even during a
simulation, this feature can model moving boundaries for
time domain optimization and phenomena such as the
Doppler effect.

1 Introduction

The accurate modeling of waveguide components,
discontinuities and junctions requires a precision in the
positioning of boundaries that is identical to, or better
than the manufacturing tolerances. In traditional TLM
models of electromagnetic structures, boundaries can only

be placed either across the nodes or halfway between nodes.

Unless all dimensions of the structure are integer multiples
of A1/2 the mesh parameter would have to be very small

indeed, leading to unacceptable computational requirements.

Similar considerations apply when curved boundaries with
very small radii of curvature must be modeled. It is therefore

important to provide for arbitrary positioning of walls. A
method for changing the position of boundaries in 2D TLM

through modification of the impulse scattering matrix of

boundary nodes has been described already in 1973 by

Johns [I] who, at the time, thought that the advantage

of this precedure over stepped contour (Manhattan-style)
modeling was too small to warrant the additional complexity

of the algorithm. However, this is not true when analyzing

narrowband waveguide components such as filters.

2 Boundary Extension by Reactive Elements

In Johns’ concept of arbitrary wall positioning in 2D

TLM [1] a boundary branch which has a length different

from At/2 is simply replaced by an equivalent branch of
length A1/2 having an identical input admittance. This
ensures synchronism but requires a different characteristic
admittance for the boundary branch and hence, a
modification of the impulse scattering matrix of the
boundary node.
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The method proposed in this paper leaves the impulse
scattering matrix of the boundary nodes intact, but replaces
the single boundary reflection coefficient by a recursive
reflection algorithm which functions as follows.
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Fig. 1 Extension of short and open-circuit boundaries

mI
in a TLM mesh, and their represent at ion by equivalent
reactance.

Assume that we wish to position a reflecting boundary
(electric or magnetic wall) at a distance A1/2 + 1from a node
as shown in Fig. 1, where I is an arbitrary shift in the
boundarv ~osition bevond the standard distance A1/2 for

“. .

which the node scat tering mat rix has been defined. In fact,
this amounts to terminating the regular A1/2 long boundary
branch in a short- or open-circuited transmission line section
with the normalized input reactance z,

%i = jZi = * = jtan,Bl
z~

for an electric wall, and

(1)

1 1
‘.jZi.-=--, for a magnetic wail

Jwczo jtanRl

As long as the excess length I is much smaller than the
wavelength (or p{ <<I), the inductance or capacitance of the
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branch extension can be considered independent of

frequency, since tan~[ x pi, yielding

L
Z(J~— foT an electric wall, and

c

(2)

C1~— for a magnetic wall.
Czo

where the propagation velocity on the TLM mesh lines is

taken as c.

It is now possible to write the differential equation relating

voltage and current at the input of the reactive stubs in terms

of the incident and reflected impulses, and to replace this

differential equation by a difference equation. This results in

the following general recursive formula:

K—1
kv’ .p— kv” + ~ (P k-lvr + k-lb”)

K+l
(3)

where p = +1 for a magnetic wall and P = – 1 for an electric

wall. K is equal to ~ in the 3D TLM case, and # in the

2D TLM case. Eq. (3) indicates that the present impulse

reflected from the boundary in the reference plane at A1/2

depends on the present incident impulse as well as on the

previous incident and reflected impulses, which need to be

stored. This recursive algorithm amounts to a numerical

procedure for integrating the differential equation describing

the behavior of the reactive stub in the time domain.

3 Verification of Results

The accuracy of the above algoritm has been validated by

performing extensive simulations of structures most sensitive

to small variations in their dimensions, namely quarterwave

and halfwave resonators as shown in Fig. 2. One of the walls

was made movable by application of Eq. (3), and 3D-TLM

results obtained with the condensed node scheme [2] for the

resonant frequencies were compared with accurate analytical

values. Fig. 3 demonstrate the results. Data obtained for

higher order modes yield information on the accuracy of the

algorithm as a function of the incident angle. It appears

that the error margin is largest for incident angles around 45

clegrees.
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Fig. 3 Relative error in resonant frequency of the resonator

shown in Fig. 2 as a function of the angle of incidence for

the three values of K = 21/A(.

4 Conclusion

The new technique presented in this paper effectively

removes the restriction that dimensions of TLM models can

only be integer multiples of the mesh parameter. It thus

considerably improves the flexibility of TLM modeling of

microwave/millimeter-wave/optical components by freeing

the modeler from the “Manhattan-style” approximation

of curved boundaries and by improving the geometrical

resolution without increase in computational expenditure.

Since the position parameter K = 21/Al can be varied in
arbitrarily small increments between computational steps,
this feature can be used to model moving boundaries and

allows optimization in the time domain through modification

of structure geometry during a simulaton. Also, the direct

visualization of phenomena such as the Doppler effect
becomes feasible.
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Fig. 2 Quarter-wave resonator with
validation of the proposed algorithm.
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